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a b s t r a c t 

In this paper, we propose a hyperspectral image (HSI) classification method using spectral-spatial long 

short term memory (LSTM) networks. Specifically, for each pixel, we feed its spectral values in different 

channels into Spectral LSTM one by one to learn the spectral feature. Meanwhile, we firstly use princi- 

ple component analysis (PCA) to extract the first principle component from a HSI, and then select local 

image patches centered at each pixel from it. After that, we feed the row vectors of each image patch 

into Spatial LSTM one by one to learn the spatial feature for the center pixel. In the classification stage, 

the spectral and spatial features of each pixel are fed into softmax classifiers respectively to derive two 

different results, and a decision fusion strategy is further used to obtain a joint spectral-spatial results. 

Experimental results on three widely used HSIs (i.e., Indian Pines, Pavia University, and Kennedy Space 

Center) show that our method can improve the classification accuracy by at least 2.69%, 1.53% and 1.08% 

compared to other state-of-the-art methods. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

With the development of hyperspectral sensors, it is convenient

o acquire images with high spectral and spatial resolutions si-

ultaneously. Hyperspectral data is becoming a valuable tool to

onitor the Earth’s surface. They have been widely used in agri-

ulture, mineralogy, physics, astronomy, chemical imaging, and en-

ironmental sciences [1] . For these applications, an essential step is

mage classification whose purpose is to identify the label of each

ixel [2] . 

Many methods have been proposed to deal with hyperspectral

mage (HSI) classification. Traditional methods, such as k-nearest-

eighbors and logistic regression, often use the high-dimensional

pectral information as features, thus suffering from the issue of

curse of dimensionality” [3] . To address this issue, dimensionality

eduction methods are widely used. These methods include prin-

ipal component analysis (PCA) [4,5] and linear discriminant anal-

sis (LDA) [6–8] . In [9] , a promising method called support vec-

or machine (SVM) was successfully applied to HSI classification. It

xhibits low sensitivity to the data with high dimensionality and

mall sample size. In most cases, SVM-based classifiers can ob-

ain superior performance as compared to other methods. How-

ver, SVM is still a shallow architecture. As discussed in [10] , these
� This paper was presented in part at the CCF Chinese Conference on Computer 

ision, Tianjin, 2017. This paper was recommended by the program committee. 
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hallow architectures have shown effectiveness in solving many

imple or well-constrained problems, but their limited modeling

nd representational power are insufficient in complex scene cases.

In the past few years, with the advances of the computing

ower of computers and the availability of large-scale datasets,

eep learning techniques [11] have gained great success in a va-

iety of machine learning tasks. Among these techniques, CNN

12,13] has been recognized as a state-of-the-art feature extrac-

ion method for various computer vision tasks [14–16] owing to

ts local connections and weight sharing properties. Besides, re-

urrent neural network (RNN) [17,18] and its variants have been

idely used in sequential data modeling such as speech recogni-

ion [19,20] and machine translation [21,22] . 

Recently, deep learning has been introduced into the remote

ensing community especially for HSI classification [23–29] . For ex-

mple, in [1] , a stacked autoencoder model was proposed to ex-

ract high-level features in an unsupervised manner. Inspired from

t, Tao et al. proposed an improved autoencoder model by adding

 regularization term into the energy function [30] . In [31] , deep

elief network (DBN) was applied to extract features and classifica-

ion results were obtained by logistic regression classifier. For these

odels, inputs are high-dimensional vectors. Therefore, to learn

he spatial feature from HSIs, an alternative method is flattening

 local image patch into a vector and then feeding it into them.

owever, this method may destroy the two-dimensional structure

f images, leading to the loss of spatial information. To address this

ssue, a two dimensional CNN model was proposed in [32] . Due

o the use of the first principal component of HSIs as input, two

https://doi.org/10.1016/j.neucom.2018.02.105
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.02.105&domain=pdf
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Fig. 1. Memory cell of LSTM. 
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dimensional CNN may lose the spectral information. To simulta-

neously learn the spectral and spatial features, three-dimensional

CNN considers the local cubes as inputs [33] . 

Since hyperspectral data are densely sampled from the entire

spectrum, they are expected to have dependencies between differ-

ent spectral bands. First, it is easy to observe that for any material,

the adjacent spectral bands tend to have very similar values, which

implies that adjacent spectral bands are highly dependent on each

other. In addition, some materials also demonstrate long-term de-

pendency between non-adjacent spectral bands [34] . In this paper,

we regard each hyperspectral pixel as a data sequence and use

long short term memory (LSTM) [35] to model the dependency

in the spectral domain. Similar to spectral channels, pixels of the

image also depend on each other in the spatial domain. Thus, we

can also use LSTM to extract spatial features. The extracted spec-

tral and spatial features for each pixel are then fed into softmax

classifiers. The classification results can be combined to derive a

joint spectral-spatial result. 

The rest of this paper is structured as follows. In the follow-

ing section, we will introduce the basic knowledge about LSTM. In

Section 3 , we will present the proposed method in detail. The ex-

periments are reported in Section 4 , followed by the conclusion in

Section 5 . 

2. Long short term memory 

RNN has been well acknowledged as a powerful network to ad-

dress the sequence learning problem by adding recurrent edges

to connect the neuron to itself across time. Assume that we have

an input sequence { x 1 , x 2 , . . . , x T } and a sequence of hidden states

{ h 1 , h 2 , . . . , h T } . At a given time t , the node with recurrent edge re-

ceives the input x t and its previous output value h t−1 at time t − 1 ,

then outputs the weighted sum of them, which can be formulated

as follows: 

h t = σ (W hx x t + W hh h t−1 + b) (1)

where W hx is the weight between the input node and the recur-

rent hidden node, W hh is the weight between the recurrent hidden

node and itself from the previous time step, b and σ are bias and

nonlinear activation function, respectively. 

However, there exists an issue when training RNN models. As

can be seen from Eq. (1) , the contribution of recurrent hidden node

h m 

at time m to itself h n at time n may approach infinity or zero

as n − m increases whether | W hh | < 1 or | W hh | > 1. This will lead

to the gradient vanishing and exploding problem [36] when back-

propagating errors across many time steps. Therefore, it is difficult

to learn long range dependencies with RNN. To address this is-

sue, LSTM was proposed to replace the recurrent hidden node by a

memory cell shown in Fig. 1 where ‘ �’ and ‘ �’ represent dot prod-

uct and matrix addition, respectively. The memory cell contains a

node with a self-connected recurrent edge of a fixed weight one,

ensuring that the gradient can pass across many time steps with-

out vanishing or exploding [37] . LSTM unit consists of four impor-

tant parts: input gate, output gate, forget gate, and candidate cell

value. Based on these parts, memory cell and output can be com-

puted by: 

f t = σ (W h f · h t−1 + W x f · x t + b f ) 

i t = σ (W hi · h t−1 + W xi · x t + b i ) 

˜ 
 t = tanh (W hC · h t−1 + W xC · x t + b C ) 

 t = f t ◦ C t−1 + i t ◦ ˜ C t 

o t = σ (W ho · h t−1 + W xo · x t + b o ) 

h t = o t ◦ tanh (C t ) (2)
here σ is the logistic sigmoid function, ‘ · ’ is a matrix multiplica-

ion, ‘ ◦’ is a dot product, and b f , b i , b C and b o are bias terms. The

eight matrix subscripts have the obvious meanings. For instance,

 hi is the hidden-input gate matrix, W xo is the input-output gate

atrix etc. 

. Methodology 

The flowchart of the proposed spectral-spatial LSTMs (SSLSTMs)

s shown in Fig. 2 . From this figure, we can observe that SSLSTMs

onsist of two important components: Spectral L STM (SeL STM) and

patial L STM (SaL STM). For each pixel in a given HSI, we feed its

pectral values into the SeLSTM to learn the spectral feature and

hen derive a classification result. Similarly, for the local patch of

ach pixel, we feed it into a SaLSTM to extract the spatial fea-

ure and then obtain a classification result. To fuse the spectral-

patial results, we finally combine these two classification results

n a weighted sum manner. In the following subsections, we will

ntroduce these processes in detail. 

.1. Spectral LSTM 

Hundreds of spectral bands in HSIs provide different spectral

haracteristics of the object in the same location. Due to the com-

lex situation of lighting, rotations of the sensor, different atmo-

pheric scattering conditions and so on, spectra have complex vari-

tions. Therefore, we need to extract robust and invariant features

or classification. It is believed that deep architectures can poten-

ially lead to progressively more abstract features at higher layers,

nd more abstract features are generally invariant to most local

hanges of the input. In this paper, we consider the spectral values

n different channels as an input sequence and use LSTM discussed

bove to extract spectral features for HSI classification. Fig. 3 shows

he flowchart of the proposed classification scheme with spectral

eatures. First, we choose the pixel vector x i ∈ R 

1 × K where K in-

icates the number of spectral bands from a given HSI. Second,

e transform the vector to a K -length sequence { x 1 
i 
, . . . , x k 

i 
, . . . , x K 

i 
}

here x k 
i 

∈ R 

1 ×1 indicates the pixel value of k -th spectral band.

hen, the sequence is fed into LSTM one by one and the last out-

ut is fed to softmax classifier. We set the loss function to cross
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Fig. 2. Flowchart of the proposed SSLSTMs. 

Fig. 3. Flowchart of SeLSTM. 

Fig. 4. Flowchart of SaLSTM. 
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ntropy CE = − ∑ 

Y log ̃  Y , where Y and 

˜ Y represent the real label

nd the predicted label of a pixel, respectively. This loss function

an be optimized by Adam algorithm [38] . Finally, we can obtain

he probability value P spe (y = j| x i ) , j ∈ { 1 , 2 , . . . , C} where C indi-

ates the number of classes. 

.2. Spatial LSTM 

To extract the spatial feature of a specific pixel, we take a

eighborhood region of it into consideration. Due to the hundreds

f channels along the spectral dimension, it always has tens of

housands of dimensions. A large neighborhood region will re-

ult in too large input dimension for the classifier, containing too

arge amount of redundancy [1] . Motivated by the works in [1,32] ,

e firstly use PCA to extract the first principle component. Sec-

nd, for a given pixel x i , we choose a neighborhood X i ∈ R 

S × S cen-

ered at it. After that, we transform the rows in this neighbor-

ood to a S -length sequence { X 1 
i 
, . . . , X l 

i 
, . . . , X S 

i 
} where X l 

i 
indicates

he l th row of X i . Finally, we feed the sequence into LSTM to ex-

ract the spatial feature of x i . Similar to spectral features-based

lassification, we use the last output of LSTM as an input to the

oftmax layer and achieve the probability value P spa (y = j| x i ) , j ∈
 1 , 2 , . . . , C} . The configurations of loss function and optimization

lgorithm in SaLSTM are the same as those of SeLSTM. The over-
ll flowchart of the proposed spatial features-based classification

ethod is demonstrated in Fig. 4 . 

.3. Joint spectral-spatial classification 

The above two subsections introduce the classification methods

ased on spectral and spatial features respectively. With the devel-

pment of imaging spectroscopy technologies, current sensors can

cquire HSIs with very high spatial resolutions. Therefore, the pix-

ls in a small spatial neighborhood belong to the same class with

 high probability. For a large homogeneous region, the pixels may

ave different spectral responses. If we only use the spectral fea-

ures, the pixels will be classified into different subregions. On the

ontrary, for multiple neighboring regions, if we only use the spa-

ial information, these regions will be classified as the same one.

hus, for accurate classifications, it is essential to take into account

he spatial and spectral information simultaneously [8] . Based on

he posterior probabilities P spe (y = j| x i ) and P spa (y = j| x i ) , an intu-

tive method to combine the spectral and spatial feature is to fuse

hese two results in a weighted sum manner, which can be formu-

ated as P (y = j| x i ) = w spe P spe (y = j| x i ) + w spa P spa (y = j| x i ) , where

 spe and w spa are fusion weights that satisfy w spe + w spa = 1 . For

implicity, we use uniform weights in our implementation, i.e.,

 spe = w spa = 

1 . 
2 
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Fig. 5. Indian Pines scene dataset. (a) False-color composite image (b) Ground-truth map containing 16 mutually exclusive land cover classes. 

Table 1 

Number of pixels for training/testing and the total number of pixels 

for each class in IP ground truth map. 

No. Class Total Training Test 

C1 Alfalfa 46 5 41 

C2 Corn-notill 1428 143 1285 

C3 Corn-mintill 830 83 747 

C4 Corn 237 24 213 

C5 Grass-pasture 483 48 435 

C6 Grass-trees 730 73 657 

C7 Grass-pasture-mowed 28 3 25 

C8 Hay-windrowed 478 48 430 

C9 Oats 20 2 18 

C10 Soybean-notill 972 97 875 

C11 Soybean-mintill 2455 246 2209 

C12 Soybean-clean 593 59 534 

C13 Wheat 205 21 184 

C14 Woods 1265 127 1138 

C15 Buildings-Grass-Trees-Drives 386 39 347 

C16 Stone-Steel-Towers 93 9 84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Pavia University scene dataset. (a) False-color composite image (b) Ground- 

truth map containing 9 mutually exclusive land cover classes. 

Table 2 

Number of pixels for training/testing and the total number of 

pixels for each class in PUS ground truth map. 

No. Class Total Training Test 

C1 Asphalt 6631 548 6083 

C2 Meadows 18,649 540 18,109 

C3 Gravel 2099 392 1707 

C4 Trees 3064 524 2540 

C5 Painted metal sheets 1345 265 1080 

C6 Bare Soil 5029 532 4497 

C7 Bitumen 1330 375 955 

C8 Self-Blocking Bricks 3682 514 3168 

C9 Shadows 947 231 716 
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a  
4. Experimental results 

4.1. Datasets 

We test the proposed method on three famous HSI datasets,

which are widely used to evaluate classification algorithms. 

• Indian Pines (IP): The first dataset was acquired by the AVIRIS

sensor over the Indian Pine test site in northwestern Indiana,

USA, on June 12, 1992 and it contains 224 spectral bands. We

utilize 200 bands after removing four bands containing zero

values and 20 noisy bands affected by water absorption. The

spatial size of the image is 145 × 145 pixels, and the spatial

resolution is 20 m. The false-colour composite image and the

ground-truth map are shown in Fig. 5 . The available number of

samples is 10249 ranging from 20 to 2455 in each class, which

is reported in Table 1 . 

• Pavia University (PUS): The second dataset was acquired by

the ROSIS sensor during a flight campaign over Pavia, north-

ern Italy, on July 8, 2002. The original image was recorded

with 115 spectral channels ranging from 0.43 m to 0.86 m. Af-

ter removing noisy bands, 103 bands are used. The image size

is 610 × 340 pixels with a spatial resolution of 1.3m. A three

band false-colour composite image and the ground-truth map

are shown in Fig. 6 . In the ground-truth map, there are nine

classes of land covers with more than 10 0 0 labeled pixels for

each class shown in Table 2 . 

• Kennedy Space Center (KSC): The third dataset was acquired by

the AVIRIS sensor over Kennedy Space Center, Florida, on March

23, 1996. It contains 224 spectral bands. We utilize 176 bands
of them after removing bands with water absorption and low

signal noise ratio. The spatial size of the image is 512 × 614 pix-

els, and the spatial resolution is 18m. Discriminating different

land covers in this dataset is difficult due to the similarity of

spectral signatures among certain vegetation types. For classifi-

cation purposes, thirteen classes representing the various land-

cover types that occur in this environment are defined. Fig. 7

demonstrates a false-colour composite image and the ground-

truth map. The numbers of pixels for training and testing are

shown in Table 3 . 

.2. Experimental setup 

To demonstrate the effectiveness of the proposed LSTM-based

lassification method, we quantitatively and qualitatively evalu-

te the performance of SeLSTM, SaLSTM and SSLSTMs. Besides,
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Fig. 7. Kennedy Space Center dataset. (a) False-color composite image (b) Ground-truth map containing 13 mutually exclusive land cover classes. 

Table 3 

Number of pixels for training/testing and the total number of pixels 

for each class in KSC ground truth map. 

No. Class Total Training Test 

C1 Scrub 761 76 685 

C2 Willow swamp 243 24 219 

C3 Cabbage palm hammock 256 26 230 

C4 Cabbage palm/oak hammock 252 25 227 

C5 Slash pine 161 16 145 

C6 Oak/broadleaf hammock 229 23 206 

C7 Hardwood swamp 105 11 94 

C8 Graminoid marsh 431 43 388 

C9 Spartina marsh 520 52 468 

C10 Cattail marsh 404 40 364 

C11 Salt marsh 419 42 377 

C12 Mud flats 503 50 453 

C13 Water 927 93 834 
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Table 4 

OA(%) of the SSLSTMs with different size of neighbor- 

hood regions. 

Dataset Size of neighborhood regions 

8 × 8 16 × 16 32 × 32 64 × 64 

IP 75.19 85.59 91.75 94.83 

PUS 93.10 96.82 97.38 97.17 

KSC 82.58 92.22 94.20 94.95 

Table 5 

OA(%) of SeLSTM and SaLSTM with different numbers of hid- 

den nodes. 

Dataset Number of hidden nodes 

{16, 32} {32, 64} {64, 128} {128, 256} 

IP 90.06 92.83 94.83 93.44 

PUS 91.80 95.91 97.38 98.14 

KSC 90.90 91.94 93.75 94.95 
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e compare them with several state-of-the-art methods, in-

luding PCA , LDA , non-parametric weighted feature extraction

NWFE) [39] , regularized local discriminant embedding (RLDE)

40] , matrix-based discriminant analysis (MDA) [41] and CNN [33] .

e also directly use the original pixels as a benchmark. For LDA,

he within-class scatter matrix S W 

is replaced by S W 

+ εI , where

 = 10 −3 , to alleviate the singular problem. The optimal reduced

imensions for PCA, LDA, NWFE and RLDE are chosen from [2,30].

or MDA, the optimal window size is selected from a given set {3,

, 7, 9, 11}. For CNN, the number of layers and the size of filters are

he same as the network in [33] . For LSTM, we only use one hid-

en layer, and the number of optimal hidden nodes are selected

rom a given set {16, 32, 64, 128, 256}. 

For IP and KSC datesets, we randomly select 10% pixels from

ach class as the training set, and the remaining pixels as the

esting set. For PUS dataset, we randomly choose 3921 pixels as

he training set and the rest of pixels as the testing set [41] .

he detailed numbers of training and testing samples are listed in

ables 1 –3 . In order to reduce the effects of random selection, all

he algorithms are repeated five times and the average results are

eported. The classification performance is evaluated by overall ac-

uracy (OA), average accuracy (AA), per-class accuracy, and Kappa

oefficient κ . OA defines the ratio between the number of correctly

lassified pixels to the total number of pixels in the testing set, AA

efers to the average of accuracies in all classes, and κ is the per-

entage of agreement corrected by the number of agreements that

ould be expected purely by chance. 

.3. Parameter selection 

There are two important parameters in the proposed classifi-

ation framework, including the size of neighborhood regions and
he number of hidden nodes. Firstly, we fix the number of hid-

en nodes and select the optimal region size from a given set

8 × 8, 16 × 16, 32 × 32, 64 × 64}. Table 4 demonstrates OAs of the

SLSTMs method on three datasets. From this Table, we can ob-

erve that as the region size increases, OA will firstly increase and

hen decrease on PUS dataset. Therefore, the optimal size is chosen

s 32 × 32. For IP and KSC datasets, OA will increase as the size

ncreases. However, larger sizes significantly increase the computa-

ion time. Thus, we set the optimal size as 64 × 64 for IP and KSC

atasets. 

Secondly, we fix the region size and search for the optimal

umber of hidden nodes for SeLSTM and SaLSTM from four dif-

erent combinations {16, 32}, {32, 64}, {64, 128} and {128, 256}.

s shown in Table 5 , when the number of hidden nodes for SeL-

TM and SaLSTM are set to 64 and 128 respectively, the SSLSTMs

ethod achieves the highest OA on IP dataset. Similarly, we can

ee that SSLSTMs obtains the highest OA on PUS and KSC datasets

hen the number of hidden nodes for SeL STM and SaL STM are set

o 128 and 256 respectively. 

.4. Performance comparison 

Table 6 reports the quantitative results acquired by ten meth-

ds on IP dataset. From these results, we can observe that PCA

chieves the lowest OA among ten methods, mainly because PCA

irectly extracts spectral features for classification without consid-

ring spatial features. Although LDA and NWFE are still spectral-

ased methods, they achieve better results than PCA due to the

se of label information in training samples. Besides, MDA achieves

etter performance than the other LDA-related methods which
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Table 6 

OA , AA , per-class accuracy (%), and κ performed by ten methods on IP dataset using 10% pixels from each class 

as the training set. 

Label Original PCA LDA NWFE RLDE MDA CNN SeLSTM SaLSTM SSLSTMs 

OA 77.44 72.58 76.67 78.47 80.97 92.31 90.14 72.22 91.72 95.00 

AA 74.94 70.19 72.88 76.08 80.94 89.54 85.66 61.72 83.51 91.69 

κ 74.32 68.58 73.27 75.34 78.25 91.21 88.73 68.24 90.56 94.29 

C1 56.96 59.57 63.04 62.17 64.78 73.17 71.22 25.85 85.85 88.78 

C2 79.75 68.75 72.04 76.27 78.39 93.48 90.10 66.60 89.56 93.76 

C3 66.60 53.95 57.54 59.64 68.10 84.02 91.03 54.83 91.43 92.42 

C4 59.24 55.19 46.58 59.83 70.80 83.57 85.73 43.94 90.61 86.38 

C5 90.31 83.85 91.76 88.49 92.17 96.69 83.36 83.45 88.60 89.79 

C6 95.78 91.23 94.41 96.19 94.90 99.15 91.99 87.76 90.81 97.41 

C7 80.00 82.86 72.14 82.14 85.71 93.60 85.60 23.20 51.20 84.80 

C8 97.41 93.97 98.74 99.04 99.12 99.91 97.35 95.40 99.02 99.91 

C9 35.00 34.00 26.00 44.00 73.00 63.33 54.45 30.00 38.89 74.44 

C10 66.32 64.18 60.91 69.18 69.73 82.15 75.38 71.29 88.64 95.95 

C11 70.77 74.96 76.45 77.78 79.38 92.76 94.36 75.08 94.62 96.93 

C12 64.42 41.72 67.45 64.05 72.28 91.35 78.73 54.49 86.10 89.18 

C13 95.41 93.46 96.00 97.56 97.56 99.13 95.98 91.85 90.11 98.48 

C14 92.66 89.45 93.79 93.49 92.36 98.22 96.80 90.37 98.10 98.08 

C15 60.88 47.77 65.54 58.50 67.10 87.84 96.54 30.49 88.59 92.85 

C16 87.53 88.17 83.66 89.03 89.68 94.29 81.90 62.86 64.05 87.86 

Fig. 8. Classification maps on the IP dataset. (a) Original. (b) PCA. (c) LDA. (d) NWFE. (e) RLDE. (f) MDA. (g) CNN. (h) SeLSTM. (i) SaLSTM. (j) SSLSTMs. 

Table 7 

OA , AA , per-class accuracy (%), and κ performed by ten methods on PUS dataset using 3921 pixels as the training 

set. 

Label Original PCA LDA NWFE RLDE MDA CNN SeLSTM SaLSTM SSLSTMs 

OA 89.12 88.63 84.08 88.73 88.82 96.95 96.55 93.20 94.98 98.48 

AA 90.50 90.18 87.23 90.38 90.45 96.86 97.19 93.13 94.86 98.51 

κ 85.81 85.18 79.59 85.31 85.43 95.93 95.30 90.43 92.84 97.56 

C1 87.25 87.07 82.91 86.86 87.20 96.69 96.72 91.33 92.20 96.83 

C2 89.10 88.38 80.68 88.50 88.40 97.76 96.31 94.58 95.86 98.74 

C3 81.99 81.96 69.21 82.20 81.69 90.69 97.15 83.93 92.42 96.57 

C4 95.65 95.14 95.99 95.27 95.79 98.44 96.16 97.78 91.59 98.43 

C5 99.76 99.76 99.90 99.81 99.87 10 0.0 0 99.81 99.46 98.70 99.94 

C6 88.78 88.06 89.53 88.16 88.67 96.26 94.87 91.73 96.91 99.43 

C7 85.92 85.32 81.11 86.57 86.06 97.95 97.44 90.76 98.74 99.31 

C8 86.14 86.06 85.81 86.13 86.42 93.98 98.23 88.78 94.79 97.98 

C9 99.92 99.92 99.92 99.89 99.94 10 0.0 0 98.04 99.83 92.54 99.39 
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Fig. 9. Classification maps on the PUS dataset. (a) Original. (b) PCA. (c) LDA. (d) NWFE. (e) RLDE. (f) MDA. (g) CNN. (h) SeLSTM. (i) SaLSTM. (j) SSLSTMs. 

Fig. 10. Classification maps on the KSC dataset. (a) Original. (b) PCA. (c) LDA. (d) NWFE. (e) RLDE. (f) MDA. (g) CNN. (h) SeLSTM. (i) SaLSTM. (j) SSLSTMs. 
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onsider spectral information only, because it can extract spatial

nd spectral features simultaneously. This indicates the importance

f spatial features for HSI classification. So, as spatial based meth-

ds, CNN and SaLSTM perform better than other spectral-based

ethods. However, they only use the first principal component

f all spectral bands, leading to the loss of spectral information.

herefore, the performance obtained by CNN or SaLSTM is inferior

o that by MDA. Nevertheless, if we combine the spectral infor-
ation and spatial information together, SSLSTMs can significantly

mprove the performance as compared to SeLSTM and SaLSTM. Ad-

itionally, as a kind of neural network, SSLSTMs is able to capture

he non-linear distribution of hyperspectral data, while the linear

ethod MDA may fail. Therefore, SSLSTMs obtains better results

han MDA. Fig. 8 demonstrates classification maps achieved by dif-

erent methods on the IP dataset. It can be observed that SSLSTMs

btains a more homogeneous map than other methods. 
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Table 8 

OA , AA , per-class accuracy (%), and κ performed by ten methods on KSC dataset using 10% pixels from each class as 

the training set. 

Label Original PCA LDA NWFE RLDE MDA CNN SeLSTM SaLSTM SSLSTMs 

OA 93.16 92.60 92.05 75.70 93.50 96.81 92.55 96.55 96.08 97.89 

AA 89.15 88.45 87.02 59.47 90.09 95.30 89.20 94.31 95.38 97.28 

κ 92.38 91.76 91.14 72.65 92.77 96.45 91.69 96.15 95.63 97.65 

C1 95.43 95.14 95.40 97.14 95.30 96.93 94.86 99.71 98.54 99.56 

C2 91.44 91.36 92.51 91.19 92.26 97.26 77.53 88.13 82.65 90.41 

C3 90.86 90.55 82.89 77.19 88.44 98.92 84.52 10 0.0 0 99.57 10 0.0 0 

C4 79.52 77.94 71.98 0.08 76.90 90.31 77.71 85.02 10 0.0 0 99.56 

C5 68.20 65.34 62.36 0.00 77.64 80.00 80.97 78.62 92.41 93.79 

C6 67.34 64.54 74.93 4.37 77.82 92.47 72.62 82.52 94.66 95.15 

C7 84.19 85.52 72.95 0.00 82.67 94.68 93.19 10 0.0 0 10 0.0 0 10 0.0 0 

C8 95.17 94.66 89.88 36.33 91.97 96.26 93.87 95.36 83.51 88.40 

C9 95.92 94.15 95.12 94.92 98.08 99.89 95.85 99.15 98.93 99.57 

C10 96.78 96.68 99.21 90.10 96.78 98.35 96.81 10 0.0 0 97.53 10 0.0 0 

C11 98.14 98.14 97.85 94.18 98.23 99.33 94.27 10 0.0 0 97.61 99.47 

C12 95.90 95.83 96.22 87.95 95.39 94.59 97.35 97.57 94.92 98.90 

C13 10 0.0 0 10 0.0 0 10 0.0 0 99.98 99.68 99.94 10 0.0 0 10 0.0 0 99.64 99.88 
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Similar conclusions can be observed from the PUS dataset in

Table 7 and Fig. 9 . Again, MDA, CNN, and LSTM-based methods

achieve better performance than other methods. Specifically, OA,

AA and κ obtained by CNN are almost the same as MDA, and

SSLSTMs obtains better performance than CNN and MDA. It is

worth noting that the improvement of OA, AA and κ from MDA or

CNN to SSLSTMs is not remarkable as those on IP dataset, because

CNN and MDA have already obtained a high performance and a

further improvement is very difficult. Table 8 and Fig. 10 show the

classification results of different methods on the KSC dataset. Simi-

lar to the other two datasets, SSLSTMs achieves the highest OA, AA

and κ than other methods. 

5. Conclusion 

In this paper, we have proposed a HSI classification method

based on a LSTM network. Both the spectral feature extraction

and the spatial feature extraction issues were considered as se-

quence learning problems, and LSTM was naturally applied to ad-

dress them. Specifically, for a given pixel in HSIs, its spectral val-

ues in different channels were fed into LSTM one by one to learn

spectral features. For the spatial feature extraction, a local image

patch centered at the pixel was firstly selected from the first prin-

cipal component of HSIs, and then the rows of the patch were fed

into LSTM one by one. By conducting experiments on three HSIs

collected by different instruments (AVIRIS and ROSIS), we com-

pared the proposed method with state-of-the-art methods includ-

ing CNN. The experimental results indicate that using spectral and

spatial information simultaneously improves the classification per-

formance and results in more homogeneous regions in classifica-

tion maps compared to only using spectral information. 
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